Comparison of Stochastic Point Process Models of Rainfall in Singapore
نویسندگان
چکیده
Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models. Keywords—rainfall disaggregation, statistical properties, Poisson processed, Bartlett-Lewis model, Neyman-Scott model
منابع مشابه
Stochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting ( A cas study: Ardebilcity
Rainfall is the main source of the available water for human. Predicting the amount of the future rainfall is useful for informed policies, planning and decision making that will help potentially make optimal and sustainable use of available water resources. The main aim of this study was to investigate the trend and forecast monthly rainfall of selected synoptic station in Ardabil province usi...
متن کاملComparison of Efficiency for Hydrological Models (AWBM & SimHyd) and Neural Network (MLP & RBF) in Rainfall–Runoff Simulation (Case study: Bar Aryeh Watershed -Neyshabur)
For suitable programming and management of water resources, access to perfect information from the discharge at the watershed outlet is essential. In most watersheds, the hydrometric station is not available; then, different models are used to simulate the discharge within watersheds without data. The selection of preferred model for rainfall- runoff simulation depends to the purpose of modelin...
متن کاملEvaluation and comparison of performance of SDSM and CLIMGEN models in simulation of climatic variables in Qazvin plain
Climate change is found to be the most important global issue in the 21st century, so to monitor its trend is of great importance. Atmospheric General Circulation Models because of their large scale computational grid are not able to predict climatic parameters on a point scale, so small scale methods should be adapted. Among downscaling methods, statistical methods are used as they are easy to...
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملModeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming
Considering the importance of water and computing the amount of rainfall runoff resulted from precipitation in recent decades, using appropriate methods for predicting the amount of runoff from rainfall date has been really essential. Rainfall-runoff models are used to estimate runoff generated from precipitation in the catchment area. Rainfall-runoff process is totally a non-linear phenomenon....
متن کامل